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Gel electrophoresis and diffusion of ring-shaped DNA

Uri Alon* and David Mukamel
Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel

~Received 5 August 1996!

A model for the motion of ring-shaped DNA in a gel is introduced and studied by numerical simulations and
a mean-field approximation. The ring motion is mediated by finger-shaped loops that move in an amoebalike
fashion around the gel obstructions. This constitutes an extension of previous reptation tube treatments. It is
shown that tension is essential for describing the dynamics in the presence of loops. It is included in the model
as long-range interactions over stretched DNA regions. The mobility of ring-shaped DNA is found to saturate
much as in the well-studied case of linear DNA. Experiments in agarose gels, however, show that the mobility
drops exponentially with the DNA ring size. This is commonly attributed to dangling ends in the gel that can
impale the ring. The predictions of the present model are expected to apply to artificial two-dimensional
obstacle arrays@W. D. Volkmuth and R. H. Austin, Nature358, 600 ~1992!# which have no dangling ends. In
the zero-field case an exact solution of the model steady state is obtained, and quantities such as the average
ring size are calculated. An approximate treatment of the ring dynamics is given, and the diffusion coefficient
is derived. The model is also discussed in the context of spontaneous symmetry breaking in one dimension.
@S1063-651X~97!12601-0#

PACS number~s!: 87.10.1e, 36.20.Ey, 82.45.1z, 05.40.1j
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I. INTRODUCTION

Gel electrophoresis is a widely used technique for se
rating DNA fragments according to size@1#. The separation
resolution is limited by a saturation of the mobility at larg
DNA size. Separation of large DNA fragments has be
made possible by pulsed-field gel electrophoresis@2,3#. In
view of the phenomenal successes of these technique
analytic approach to the basic underlying motion of the m
ecule through the gel is desirable.

Most theoretical treatments@4–10# of the motion of the
DNA through the gel are based on the reptation concept@11#.
The DNA is pictured as moving through an impenetra
tube defined by the surrounding gel obstructions, with
motion mediated by a snakelike reptation of the polym
ends. Reptation has proven very successful in describ
equilibrium dynamics of polymers in gels and melts. Sim
lations @12# and experiments@13#, however, have indicated
that for sufficiently long chains undergoing electrophores
an alternative mechanism of motion is important: the form
tion of finger-like loops or leaks through the reptation tub
These loops~sometimes also called hernias, hairpins,
kinks! constitute a protrusion of the DNA chain through t
walls of the reptation tube in a doubled-up loop. Loops ha
been included in some recent simulations of linear DN
fragments undergoing gel electrophoresis@14–16#. An addi-
tional important effect, that is often neglected in treatme
inspired by equilibrium reptation theory, is tension transm
ted along the DNA chain@12#. Under a driving electric field,
strong tension forces can dramatically affect the polym
motion @16,17#.

In linear DNA chains, both loop motion and ordinary re
tation of the chain ends are possible. In order to separate

*Present address: Depts. of Physics and Molecular Biology, P
ceton University, Princeton, NJ 08540.
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and emphasize the effect of loops, here we consider DNA
the shape of a ring~open-circular DNA@18#!. The DNA ring
can move around the gel obstacles only by loops, sending
fingers in an amoebalike fashion. To our knowledge, th
have been no theoretical studies on gel electrophoresi
open-circular DNA, despite the fact that in practical applic
tions, ring-shaped DNA~plasmids! is often analyzed by ge
electrophoresis, and shows behavior different from that
linear DNA fragments@19–22#.

The behavior of ring polymers in the absence of an el
tric field is also of interest@23–25#. This problem is related
to the behavior of a melt of ring polymers, and also to ele
trophoresis in the weak-field limit through an Einstein re
tion. The diffusion of ring-shaped polymers in a lattice
obstructions has been treated by numerical simulations
theoretical arguments@25#. An exact treatment of the static
and especially the dynamics of ring-shaped polymers in z
field is, however, not available.

In this work, a model for the motion of ring-shaped DN
in a gel is introduced and studied numerically and anal
cally. The ring motion is mediated by loops that finger b
tween the gel obstructions. This model, described in Sec
constitutes an extension of previous reptation tube tre
ments. It is instructive to first study the model neglecting t
effects of tension transmitted along the DNA polyme
Monte Carlo simulations of the model, summarized in S
III A, show that the chain mobility in this case decreas
exponentially with DNA size. This is due to the formation
hooks which reduce the mobility. This behavior is modifi
when tension is taken into account. In Sec. III B, tension
added to the model as long-range interactions over stretc
regions of the polymer. Tension increases the unhook
rates, and stabilizes a ring conformation aligned with
field. This causes the mobility of long ring-shaped DNA
saturate to a finite value, much as in the well-studied cas
linear DNA. Experiments in agarose gels@19–22#, however,
show that the mobility drops to zero with the DNA ring siz
n-
1783 © 1997 The American Physical Society
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1784 55URI ALON AND DAVID MUKAMEL
with large rings hardly penetrating into the gel. This is co
monly attributed to the rings becoming impaled on dangl
ends or other impurities in the gel. The predictions of t
present model are expected to apply to artificial tw
dimensional obstacle arrays@28# which have no dangling
ends. In Sec. III C, the polymer motion is qualitatively d
scribed by a mean-field treatment. In the zero-field case,
cussed in Sec. IV, an exact solution of the model steady s
is obtained, and quantities such as the average ring size
calculated. In Sec. IV B, an approximate treatment of
zero-field ring dynamics is given, and the diffusion coef
cient is derived. This gives an analytic foundation to pre
ous scaling arguments@25#, and suggests a framework fo
analysis of dynamical features of driven polymers. In Sec
the model is also discussed in the context of spontane
symmetry breaking in one dimension.

II. MODEL FOR DNA IN A GEL INCLUDING LOOPS

We present a model for a charged polymer ring moving
an electric field in an array of obstacles~e.g., a gel!. The
model is based on the Rubinstein-Duke~RD! approach
@7–9#, and is extended here to include loops, which
hairpin-shaped excursions out of the usual reptation tu
Loops are crucial for polymers in the shape of a ring,
which the motion through the surrounding obstacles may
accomplished only by loop fingering.

We begin by describing the RD model for reptating line
polymers. We then extend the model to include loops. In
RD model, the gel is idealized as a lattice of point obstac
with pore diameterb, as shown in Fig. 1. In agarose ge

FIG. 1. Configuration of a DNA chain~heavy line! in a gel,
defined by a periodic lattice of gel pores~dotted lines!. The DNA is
divided into persistence length segments, numberedi51,2, . . . ,L
~in this caseL58). The reptation tube~light line! is defined by all
pores through which the DNA threads. The configuration is
coded using a1 for segments that are stretched between two po
with the field direction,2 for segments stretched against the fie
direction, and 0 for coiled segments in the same pore. The
played configuration is thus20110021 for i51, . . . ,8.Move
A corresponds to to a standard reptation move~inside the reptation
tube! 10→01. This move occurs with ratep. The reverse move
01→10 is against the field direction, and is given a smaller r
q. MoveB corresponds to the formation of a loop~leak through the
reptation tube!. It is represented by pair creation 00→1t2.
-
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b;100 nm, while in recently introduced artificial obstac
arraysb;1mm @28#. The DNA is represented as a chain
L segments, each of one persistence length (;50 nm!. The
segments may be stretched, when the polymer thre
through adjacent pores, or coiled, when the segment is c
tained in one pore. Each configuration of the polymer is r
resented by the positions of the successive cells that
polymer threads. A simplified description of the chain
coded by the projection along the field direction of the d
placement between segment ends. This displacement ca
either1b, when the segment threads between two pore
the field direction,2b when it threads two pores against th
field direction, or 0 when the segment is coiled in one po
Thus the configuration is reduced to a one-dimensional
tice of L sites. Each sitei corresponds to a DNA segmen
and has a statef i , which can be1, 2, or 0, as demon-
strated in Fig. 1. Note that in this description some inform
tion regarding the microscopic configuration is lost. Ho
ever, it provides a convenient way to model the dynam
@7–9#.

The chain reptates by the motion of the coiled, lax se
ments through the chain. In an aquaeos solution, the DN
assumed to be uniformly charged. The forces acting on e
segment are an electric forceFe5QE, whereQ is the charge
per segment andE is the field strength, and a therma
Brownian noiseF th of the order ofkT/b. These forces are
represented in the model by the following rules. At each ti
step, a pair of sites is chosen at random, and a move is m
with the following rates:

10→01 at rate q, 01→10 at rate p, ~1!

20→02 at rate p, 02→20 at rate q, ~2!

while 12 or 21 pairs are stuck, since they represent tw
stretched segments hooked around a gel obstacle~see Fig. 1!.
Moves in the field direction are favorably biased over t
reverse moves, through the ratesp and q. These rates are
determined, in the case of weak fields, by local detail
balance conditions@8#, such as

p5v0exp~e/2!, ~3!

q5v0exp~2e/2!, ~4!

wherev0 is a microscopic rate ande5QEb/kT. Note that
this is a nonequilibrium dynamics and that it does not ob
full detailed balance. The ratio between these rates is th
Boltzmann factor of the ratio of electrical to thermal energ

p/q55exp~e!, e5QEb/kT. ~5!

These rules, along with rates for injection of1 and2 at the
head and tail of the linear chain, define the Rubinstein-Du
model @8,9#.

We now extend this model to account for loops. A loo
amounts to a projection of the chain from a pore with at le
two coiled segments~two adjacent 0 sites! into a new pore,
threading one segment out of the pore and another segm
back to the original pore~for example, moveB in Fig. 1!.
This corresponds to a pair creation move 00→12. The re-
verse annihilation move12→00 corresponds to the loo
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55 1785GEL ELECTROPHORESIS AND DIFFUSION OF RING- . . .
retracting and forming two coiled segments in a single po
After a pair is created,1 and2 can diffuse according to the
RD rules. An important feature of the model is that pairs
1 and2, which are created together, are tracked as a c
nected pair throughout the dynamics. Each1 in the configu-
ration has a unique2 to which it is connected. Keeping
track of such connections between pairs is necessary in o
to track the loop finger hierarchy. To see this, consider a p
with many coiled segments. A number of loops may
formed, projecting into different neighboring pores. An im
portant point is that1 ’s and 2 ’s from different loops
cannot annihilate~assuming that several loops originatin
from thea pore always project to different neighbors, a re
sonable assumption for pore lattices of high coordinat
number!. Thus pairings of1 ’s and 2 ’s must be tracked:
each1 can annihilate only with the unique2 to which it is
paired. Each configuration is defined by the1 and2 and
0 sites, along with their pairing to loops~Fig. 2!. Only pair-
ings in which the hernia pairs are nested are allowed
shown in Fig. 3~pairing lines may not cross each othe!.
Starting with an allowed configuration, the loop creati
rules assure that the configuration at each subsequent tim
also allowed. The phase space is larger than in the orig

FIG. 2. A configuration of a ring-shaped DNA in the gel. Th
segments are numbered counterclockwise. The configuration
tains several branching fingers, and is encoded as shown by a s
of 1, 2, and 0’s along with their pairings into loops. Ring-shap
DNA can move through the gel only by the annihilation and c
ation of loops.

FIG. 3. An example of a configuration of1,2, and 0 charges in
the model.~a! One of the allowed pairings into loops.~b! A forbid-
den pairing, where the loops are not nested. Such a configura
cannot be reached from an allowed configuration by the model
namics.
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RD model which has the three states1, 2, and 0 for each
site, but no pairings.

The loop creation and annihilation moves, which supp
ment the reptation moves of Eqs.~1! and ~2!, are

00→1t2 at rate c, 00→2t1 at rate c8, ~6!

1t2→00 at ratea, 2t1→00 at ratea8. ~7!

The symbol t denotes pairs of1 and 2 that have been
created together~connected pair!. The loops tend to grow, a
the field bias pushes the1 ’s to the left and, the2 ’s to the
right. The loops may develop subloops, and a hierarchy
loops may form. An example is shown in Fig. 2 for a rin
shaped polymer. Thus the polymer can assume a hig
ramified shape, with a hierarchy of loops of different size

The model as described above neglects an impor
physical effect: the tension transmitted along the chain.
shown below, this proves to be very important in the ele
trophoresis of ring-shaped DNA. Tension acts as a lo
range effective interaction, and is included in the model
described in Sec. III B.

III. GEL ELECTROPHORESIS OF OPEN-CIRCULAR DNA

Using the model, we studied gel electrophoresis of rin
shaped~open circular@18#! DNA. Periodic boundary condi-
tions are thus imposed in the model. The ring is not conc
enated with any gel obstacle~it is prepared outside the ge
and moves into the gel under the field influence!. We first
study the model in the absence of tension by Monte Ca
simulations. The treatment of tension, and its effects on
dynamics, are presented in Sec. III B. A simple mean-fi
treatment is given in Sec. III C.

A. Monte Carlo results

It is instructive to first study the model as described
Sec. II, neglecting the effects of tension. In order to inves
gate the model, we performed Monte Carlo simulations, ty
cally usinga5c51, a85p, c850, p/q51.0122, and ring
lengths up toL5100. The mobility as a function of time is
shown in Fig. 4. It is seen, that the mobility displays a spik
behavior: the system is effectively in one of two states: o
with a positive mobility, and one with a zero mean mobilit
The average lifetime of the zero-mobility states grows asL
increases.

The nature of the dynamics is clarified by snapshots of
ring configurations in the two states, shown in Fig. 5. It
seen that the ring cycles between quasilinear and hoo
states. The high-mobility phases correspond to the quas
ear conformation in which the ring is aligned with the fie
@29#. The conformation of effective charges in the model th
represents this conformation is shown in Fig. 6~a!. This con-
formation is short lived, because it develops an instability
loop that buds on the side of the quasilinear ring grows i
a hooked configuration with two stretched arms, pinned o
an obstacle@see Fig. 6~b!#. In this phase, the ring is stuck
and there is zero mean mobility. The hooked state pers
for a long time. The ring unhooks by one of the arms retra
ing by fluctuations, until a new, quasilinear, high-mobili
shape is attained. This explains the burstlike structure of
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1786 55URI ALON AND DAVID MUKAMEL
mobility. In the absence of tension, the mean mobilitym
decreases exponentially withL ~Fig. 7!. This is because the
unhooking rate, by which an unstretched segment mov
from one arm to the other, is exponentially small, since
takes on the order ofL steps against the field for the segmen
to escape the arm’s effective potential trap. Similar dynami
can also occur in linear chains@12,16#. In the unhooking

FIG. 4. Monte Carlo simulation results of the model including
loops but neglecting tension, for a ring of sizeL552, with
p50.56,q50.5, andc5a51. The mobility of the ring~center of
the mass velocity! is shown as a function of time~in sweeps, where
one sweep equalsL single-bond moves!. The mobility is seen to
have a spiked behavior, where the mobility is mostly zero wit
intermittent periods of motion.

FIG. 5. The ring configurations between one mobile burst an
the next. The ring begins with a quasilinear shape aligned with t
field, which quickly develops an instability to secondary loops an
goes to a two-armed hook. The hooks~in the absence of tension!
are stuck for long times. Unhooking occurs by the retraction of on
of the arms by fluctuations against the field, until a quasilinea
shape with a nonzero mobility is reached again. The spikes in t
ring mobility in Fig. 3 are thus explained by the cycle betwee
quasilinear and hooked conformations.
es
t
t
s

phase, tension plays a crucial role, as described in Sec. III B

B. Effect of chain tension

It is important to consider the effects of tension transmit-
ted along the chain@12,16, 17, 30#. The main effect of ten-
sion is to increase the unhooking rates of stretched hooks
dramatically. It acts as a long-range interaction between
coiled segments@16#. Tension in the context of gel electro-
phoresis of linear DNA was treated in a previous study@16#,
where coiled segments were allowed to make long-ranged
hops along the chain. The present treatment simplifies this by
using only local hops. In addition, the present model extends
Ref. @16# by taking into account the effect of tension on the
loop creation and annihilation rates.

d
e
d

e
r
e

FIG. 6. Configuration of charges and loop pairings in the model
that corresponds to~a! a quasilinear conformation, and~b! a hook
with two equal arms. The quasilinear conformation typically also
includes many 0 sites, as well as small branching subloops.

FIG. 7. Mobility of a ring-shaped DNA fragment as a function
of size. Monte Carlo results for two field strengths,E52 ~light
lines!, and E51 ~bold lines!, are shown with loop creation and
annihilation rates a5e21 and c50.3. Units are such that
Qb/kT51, so that the dimensionless fielde5E. The mobility of
the model including tension~full lines! decreases with the chain
length for short chains, and then shows a saturation. For stronge
fields, the asymptotic mobility is higher, and the chain lengthL! at
which the mobility saturates is smaller. The results of the model
without tension~dashed lines! are close to the results with tension
for short chains (L,L!). However, without tension, an exponen-
tially decreasing mobility is predicted for long chains, because of
the formation of hooks.
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In order to model the effect of tension, we note that un
the influence of an electric field the charged chain beha
like a chain moving in a gravitational field coupled to i
weight. The tension transmitted along the chain is relaxe
coiled ~0! segments and at loop tips (1t2 and2t1 paired
at neighboring sites!. Note that unpaired neighboring12 or
21 sites represent segments of DNA chain which
draped over a gel obstruction, and therefore are capabl
transmitting tension. We define an effective field for ea
pair of sites, which corresponds to the tension generated
regions of stretched chain on both sides of the sites. T
results in a movement ratev j for the pair of sitesj and
j11, which depends on long-range interaction between
ferent sites, as described below. At each step of the sim
tion, a pair of sitesj and j11 is chosen at random. Pairs
which there is an allowed move are of three types:~a! coiled
sites adjacent to a stretched sitef j ,f j11502,20,01, or
10; ~b! two coiled sitesf j ,f j11500 ~creation move!; or
~c! a loop tipf j ,f j1151t2 or 2t1 ~annihilation move!.
We will refer to such pairs asrelaxed pairs. If the pair is not
one of these three types, it remains unchanged. If the pair
an allowed move, the move is performed with the ratev j ,
and the states of sitesj ,j11 are accordingly adjusted. A new
pair is chosen and the process is repeated.

To derive the movement rate for pairj ~sites j and
j11), v j , we consider the tension transmitted along t
DNA due to stretched regions of chain on either side of
pair. Since the tension accumulates along these regions
local tension field is proportional to the net displacemen
the field direction of these stretched regions. The stretc
regions terminate at either a coiled segment (0 site! or a loop
tip, since these are the points at which the chain tensio
relaxed. The effective tension force acting on a pair cons
ing of a coiled segment adjacent to a stretched
(0,f j11), with f j11561, is

F j5
1
2 e (

m5 j11

k1

fm , ~8!

wherek1 is the closest succeding site to sitej11, which is a
member of a relaxed pair, and the dimensionless exte
field is e5QEb/kT. Similarly, for a (f j ,0! pair with
f j561, the effective force is given by

F j52 1
2 e (

m5k2

j

fm, ~9!

wherek2 is the closest preceding site to sitej which is a
member of a relaxed pair. The force acting on a loop
(1t2 or 2t1 pairs! is

F j5
1
2 eS (

m5 j11

k1

fm2 (
m5k2

j

fmD , ~10!

with similar definitions ofk1 andk2. ~We note that the mode
can also be applied to linear chains, where additional po
at which tension is relaxed are the chain ends.!

As an example, consider the configuration of Fig. 2. T
configuration contains one coiled segment at sitei510,
f1050. Consider sites 9 and 10, at which the configurat
r
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is 20. To evaluate the effective field for this pair, we su
f in the two sites to the right of the pair~these sites cance
each other!, where we reach a loop tip. The total effectiv
force isF950. At sites 10 and 11, where the configuration
01, tension accumulates along a three-site stretched1 re-
gion to the right of the pair, which terminates at a loop t
andF105

3
2e.

The movement ratev j can be related to the local tensio
force F j from a consideration of the thermal and frictio
forces on the string. The motion of the DNA segmen
through the solvent is such that viscous drag forces are m
larger than any inertial term@12,17#. The behavior of the
chain under thermal noise can be treated using a Fok
Planck approach@16#, using a Smoluchowski equation fo
the string motion along the tube contour, which includes
Brownian term and a friction coefficient proportional to th
string’s length. In the present work we propose a simp
physical model, which is valid at both the strong- and wea
field limits:

v j5H r jexp~F j !, F j,0

r j~11F j !, F j.0,
~11!

wherer j is equal to a microscopic ratev0 for pairs where a
coiled segment can move (f j ,f j11510,01,02,20),
r j5c0 for pairs where a loop can be create
(f j ,f j11500) andr j5a0 where a loop can be annihilate
(f j ,f j1151t2,2t1). At all other pairs of sites,r j50,
since no other moves are allowed. The constantsv0, c0, and
a0 are the microscopic rates of the various processes. E
tion ~11! goes to a Boltzmann factor for low effective field
where it represents local detailed balance. At high effect
field strength, the movement rate becomes linear in the
fective field strength. This is expected, since at large fie
thermal fluctuations become unimportant and the local ch
velocity becomes proportional to the local force@12#. Equa-
tion ~11! allows loop annihilation rates to be affected b
chain tension, with annihilations at loop tips flanked by lo
regions stretched in the field direction given a high rate.

The model without tension, described in Sec. II, can
recovered from this model, by takingk15 j andk25 j11 in
Eqs.~8!–~10!. This corresponds to the screening limit, wh
the density of coiled segments is so high that there appea
extended regions of stretched segments in which tension
develop, and the field at each bond is due to the external fi
alone. In this case, the movement rates are related to tho
the model without tension described in Sec. II at low fiel
(e!1) via p5v0e

e/2, q5v0e
2e/2, c5c0, a5a0e

2e,
c85c0, anda85a0e

e. It is seen that in this limit, the rate
satisfy Eq.~5!.

Tension causes hooks to have a much smaller effec
the mobility. Monte Carlo calculations, including tension
two different field strengths, are shown in Fig. 7. We fin
that the ring mobility saturates at large DNA sizes, much
in the well-studied case of linear DNA fragments. It is inte
esting to note that the ring arranges itself into a quasilin
shape in the size regime studied. Here, coiled segments
very frequent—roughly one-third of the segments are coil
Thus tension is screened by the coiled segmentsand has a
very small effect during most of the dynamics, since it
important only in long, continually stretched pieces of t
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1788 55URI ALON AND DAVID MUKAMEL
chain. Only when a side-loop forms, and a hook begins to
created, does tension come into play, and essentially s
lizes the quasilinear shape aligned with the field. We n
that for very large rings, branching effects similar to tho
discovered in large linear fragments in Ref.@16#, are likely to
occur, though the ring mobility should remain constant.

The screening of tension by coiled segments is very
portant in explaining the success of reptation tube models
linear DNA which seem to describe experiments on lin
DNA fragments quite well@10,32#, though the models ne
glect both loops and tension. The present results sugges
when including loops in a model of polymer dynamics, it
essential also to take tension into account, as these two
fects have a canceling behavior, respectively increasing
decreasing the hooking rates.

The predictions of the present model that the mobi
saturates with the ring size disagree with experiments. S
ies of open-circular DNA~plasmids! run through agarose
gels show that, above a certain DNA size, the plasmids
‘‘stuck at the wells’’ and do not enter the gel@19–22#. The
explanation offered by Mickel, Arena, and Bauer@19# is that
the rings become hooked on dangling ends in the gel~uncon-
nected ends of the gel fibers or other impurities that penet
the pores!, which impale the ring~‘‘hoop in stick’’ effect!.
The ring can unhook by a fluctuation which can overco
the field pulling the ring. The probability of such a fluctu
tion is exponentially small in the ratio between the elect
force pulling the ring and the thermal forces, and the mo
ity is

m;exp~2QENb/kT!. ~12!

The saturation of the mobility predicted in the present mo
could be checked experimentally on recently introduced
tificial two-dimensional~2D! arrays of obstacles@28# with no
dangling ends that can impale the ring, as suggested in
VI.

C. Mean-field treatment

In the presence of tension, the DNA is found mostly in
quasilinear conformation aligned with the field, with ma
coiled segments. The coiled segments essentially screen
sion. This allows for a simple and local mean-field treatm
of the DNA motion.

Consider a quasilinear chain~Fig. 5, rightmost and left-
most configurations!. In this configuration, loops are annih
lated at the upfield end of the ring. The coiled segme
(0’s! which are generated move down to the leading e
where a new loop is formed. The density of coiled segme
r, is given by a balance of loop creation and annihilatio
The rates for these processes are obtained in the mean
approximation by neglecting correlations: Loops are crea
~at the leading end! when two coiled segments are adjace
at a ratecr2, and annihilated~at the upfield end! when two
stretched segments are adjacent at ratea(12r)2. In this ap-
proximation for the annihilation rate, the assumption that
ring is quasilinear is used, since a stretched segment
annihilate only with its unique pair. In a random configur
tion the pair would have a small chance of being adjace
Here we assume that, in the quasilinear configuration, a
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of stretched segments at the leading end may always be
nihilated.

The balance between annihilation and creation yields

r51/~11Ac/a!. ~13!

The mobilitym, equal to the mean center of mass displa
ment per unit time, is given by an average over all the c
figurations allowing movement, weighted by the respect
rates. Since in steady state the loop annihilation and crea
moves balance each other, we have, in the simplest m
field approximation, that the mobility is proportional to th
probability of finding a stretched segment adjacent to
coiled one:

m5~p2q!r~12r!, r51/~11Ac/a!. ~14!

The qualitative features of the mobility are reasona
described by the simple mean-field theory, as shown in F
8, where the density of coiled segments and the mobility a
function of the ratio of loop creation and annihilation rat
c/a are shown. At a high ratio of creation to annihilatio
ratesc/a, the chain is dense with stretched segments, and
mobility is low. At low c/a, there are few stretched segmen
that can move, and the mobility is again low. Aroun
c/a51, where the density of coiled segments is around o
half, the mobility is at a peak. The simulations show simi
qualitative behaviors. The mean-field mobility overestima
the full model mobility by a factor of about 2. This is prob
ably due to processes that impede the motion, such as h
ing and pair creation in the bulk of the chain and not only
the head and tail, that are neglected in the mean-field tr
ment.

IV. ZERO-FIELD CASE

We now turn to the case of zero electric field. This case
important as a question in classical polymer physics@23,24#:

FIG. 8. Density of coiled segments,r, and mobility,m, of ring-
shaped DNA as a function of the ratio of loop creation and ann
lation ratesc/a. The ring size isL540, the field strength is
E52, and the annihilation rate is held constanta5e21. Shown are
Monte Carlo simulation results of the model including tension~o’s!,
and the mean-field prediction~line!.
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what is the effect of loops on the statics and dynamics o
chain in a gel or melt at equilibrium? In addition, the zer
field diffusion can be related to the low-field electrophore
mobility via the Einstein-Nernst relations.

The zero-field case offers a significant simplification
the model: tension can be ignored in this case, and the m
described in Sec. II is used, withq5p, c5c8, anda5a8.
The probability of a given configurationC, P(C), is gov-
erned by the Master equation

dP~C!/dt5(
C8

$W~C8→C!P~C8!2W~C→C8!P~C!%,

~15!

whereW(A→B) is the rate of transition from configuratio
A to B. A solution to the master equation is found whic
satisfies detailed balance. Each move which preserves
number of stretched segments, such as10→01, is exactly
balanced by its reverse move. Moves where loops are cre
or annihilated are balanced by the reverse move, with
extra factor related to the creation and annihilation rates
configurationA which has a 00 at a certain bond, can, in
single move, go to or be reached from only two configu
tionsB andB8, which are exactly the same asA except that
they have either a1t2 or a2t1 at the bond. The solution
for the probability of configurationC is

P~C!5N~L !21~c/a!h~C!, ~16!

wherec/a is the ratio between loop creation and annihilati
rates, andh(C) is the total number of loops in the configu
ration C. In the steady state, all configurations have eq
probability, up to a factor depending only on the total nu
ber of loops in the configuration. This solution is remarka
in that, although there are strong interactions between dif
ent loops, the probability of each configuration depends o
on the number of loops and not their relative positions a
sizes. The normalization factorN(L)5(C(c/a)

h(C) is con-
nected to the number of allowed configurations~only con-
figurations with nested loops are allowed, as shown in F
3!. N(L) satisfies the recursion relation

N~L !5N~L21!1~2c/a! (
l50

L22

N~ l !N~L222 l !. ~17!

The terms on the right-hand side can be understood as
lows: given a ring of sizeL, choose a site. The first term
corresponds to the case where the site contains a 0, and
the configurations of loops can be mapped to a ring of s
L21 by deleting the site. The second term is the case wh
the site is a member of a loop with its pair at a distance
l11 sites~a loop of sizel ). The factor 2 in Eq. 17 is due to
the two possible assignments of1 and2 charges to a loop
pair, which have equal probabilities in the absence of
electric field. The valuesN(0)5N(1)51 are supplemented
to this recursion relation. Solving for the asymptotic form f
N(L) at L@1, we consider the functionu(L)5h2LN(L).
For sufficiently largeh it has a finite integral. Using a
Laplace transform ofu(L), g(s)5(L50

` u(L)e2sL, in the re-
cursion relation Eq.~17!, we find @33#
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g~s!5
12e2sh211A~e2sh2121!224~2c/a!e22sh22

2~2c/a!h22e22s .

~18!

The smallest value ofh for which g(0)5(u(L) exists is
h52A2c/a11. At this value of h, for small s,
g(s)'g01g1s

1/2. This corresponds to the following asymp
totic form of the partition sum atL@1:

N~L !5N0L
23/2~2A2c/a11!L, ~19!

with

N05~4Apc/a!21~112A2c/a!@A2c/a14c/a#1/2.
~20!

This allows a derivation of steady-state densities, such
r, the density of coiled segments~0’s!. This density is given
from the construction of the recursion relation Eq.~17! sim-
ply by those configurations at which a given site is 0, co
pared to the total weight of the configurations:

r5N~L21!/N~L !5~2A2c/a11!21. ~21!

The loop size distribution,n( l ), defined as the probability
that a selected site belongs to a loop of sizel , is
n( l )5N( l )N(L222 l )/N(L) @see Eq. ~17!#. Thus, for
1! l!L/2,

n~ l !'N0l
23/2. ~22!

This suggests that the ring polymer adopts a ramified
gered shape, with a power-law spectrum of finger sizes.

A. Average ring size

The exact solution also allows a calculation of the me
size of the ring at zero field. The radius of gyration serves
a convenient measure of the ring size: it is defined as
mean-squared distance between two sites~i.e., the sum of
number of1 sites minus the number of2 sites betweeni
and j squared, averaged over all configurations and alli and
j ). To evaluate the radius, we define the function

G~ i !5(
C

RC
2 ~ i !P~C!, ~23!

where

RC
2 ~ i !5S (

k51

i

fkD 2, ~24!

wherefk is the state of sitek in configurationC. That is,
G( i ) is the average over all configurations of the squa
distance between the two ‘‘test sites’’ 1 andi . The radius of
gyration R is simply given by the root of the mean o
G( i ),

R25L21(
i51

L

G~ i !. ~25!

We construct a recursion relation forG( i ), noting that the
only contribution that does not average to zero is from u
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closed loops in the interval between the sites. Since ther
no field, each site on a loop can be a1 or a2 with equal
probability. The mean-squared distance, averaged ove
assignments of1 and2 to the loops, is just the number o
unclosed loops. To build a recursion relation forG( i ), we go
from an interval of sizei21 to sizei . Thus, to the interval of
sites1 . . . i21 we add one sitei , which may either be a 0
belong to a loop that closes outside the interval, or close
of the open loops in the interval. Thus we divide all possi
configurations into three groups:C0, in which sitei is in a 0
state;C1, in which sitei belongs to a loop that closes outsid
the interval; and configurationC2, in which sitei pairs with
a site inside the interval, thus closing a loop. In configurat
C0, RC

2 ( i )5RC
2 ( i21). In configuration C1, RC

2 ( i )
5RC

2 ( i21)11. In configurationC2, RC
2 ( i )5RC

2 ( i21)21.
Thus

G~ i !5(
C

RC
2 ~ i21!P~C!1(

C1
P~C!2(

C2
P~C!.

~26!

This leads to the recursion relation

G~ i !5G~ i21!1~2c/a!F (
l5 i21

L22

N~ l !N~L222 l !

2(
l50

i22

N~ l !N~L222 l !G Y N~L !. ~27!

The boundary condition isG(1)512N(L21)/N(L), since
the mean-squared displacement due to a single site is jus
density of uncoiled segments 12r. G( i ) rises to a peak
when i5L/2, and then drops off to 0 ati5L, because the
ring is closed, and going around the ring the mean displa
ment must go to zero. Going to the continuum limit, a
using the symmetry ofG( i ) aroundi5L/2, we find

dG~ i !/di5~2c/a!N~L !21E
i

L2 i

N~ l !N~L2 l !dl. ~28!

For largei , using the asymptotic form ofN(L) found above
@Eq. ~19!#, the integrals involved in calculatingG( i ) can be
performed analytically. This yields

G~ i !58~2c/a!N0AiAL2 i /AL, ~29!

showing that the mean maximal excursion of the ring
G(L/2)}AL. Integrating overG( i ), one obtains

R5Ap~2c/a!N0L
1/4. ~30!

This scaling is valid for long chains. The radius for fini
chains can be readily found from the recursion relations~17!
and ~27!. Thus the ring adopts a much more compact c
figuration than the linear, reptating chain, in whichR}L1/2.
This form is valid for chains small enough that exclud
volume effects can be neglected@25,31#. An intuitive argu-
ment predicted theR;L1/4 scaling@26,27#, by mapping the
ring to a randomly branched graph. The exact solution
present model allowed us to derive this scaling exactly, fr
a steady state of a dynamic model.
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B. Dynamics of a ring

The solution for the steady state allows a rather accu
approximation for the polymer dynamics. We consider t
motion of a marked loop on the ring. We defineP( l ,t) as the
probability of finding the loop at sizel at time t. The loop
can grow if there is a 0 adjacent to the loop from the outsi
and it can shrink if there is a zero adjacent to the loop fr
inside. We make the approximation that these probabili
are given by the corresponding steady state probabilit
This approximation is a good one for large loops. This
because the motion of the loops is diffusive, and hence m
configurations of the ring segments inside and outside
marked loop are sampled on the time scale of the effec
loop motion. The evolution equation for the size of th
marked loopP( l ,t) is

]P~ l ,t !/]t5r i~ l11!P~ l11,t !1ro~ l21!P~ l21,t !

2@r i~ l !1ro~ l !#P~ l ,t !, ~31!

wherer i( l ) andro( l ) are the probabilities of a zero adjace
to the size-l loop from the inside and outside, respectively~a
microscopic rate constant has been factored out of the e
tion so that each move take one time unit!. At the bound-
aries, the equations have terms corresponding to the an
lation of the loop, which is possible when it is of sizel50 or
l5L22:

]P~0,t !/]t5r i~1!P~1,t !2@a1ro~0!#P~0,t !, ~32!

]P~L22,t !/]t5ro~L23!P~L23,t !

2@a1r i~L22!#P~L22,t !. ~33!

The main idea of the present approximation is to use
exact steady-state solution to estimate the probabilities
motion for the loop. This yields

r i~ l !5N~ l21!/N~ l !;r~11 1
2 l

21!, ~34!

ro~ l !5N~L2 l21!/N~L2 l !;r@11 3
2 ~L2 l !21#,

~35!

where the asymptotic forms are valid atl@1 andL2 l@1,
and r5(2A2c/a11)21. Note that smaller loops have o
average more zeros inside them than larger loops. This i
entropic effect, due to the larger number of loop-pairings i
large loop. This creates a bias for small loops to shrink,
effect that has important consequences for the ring dynam
as shown below.

In order to analyze the scaling of Eq.~31!, it is convenient
to turn to a continuum form

]P~ l ,t !/]t5r¹2P~ l ,t !1r¹@U~ l !P~ l ,t !# ~36!

supplemented with appropriate boundary conditions~the ex-
act form of the boundary conditions do not affect the scal
results obtained below!. The potential, due to Eqs.~34! and
~35!,

U~ l !5 3
2 @ l212~L2 l !21#, ~37!
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corresponds to the bias of small loops to shrink. Consider
case of a marked loop created at timet50. Thus the initial
conditions areP( l ,t50)5d( l50). We define

F~ l !5E
0

`

P~ l ,t !dt, ~38!

T~ l !5E
0

`

tP~ l ,t !dt. ~39!

Thus the mean lifetime of the marked loop is

t5E
0

`

T~ l !dlY E
0

`

F~ l !dl . ~40!

Ordinary differential equations forT( l ) and F( l ) may be
easily formed by appropriately integrating over Eq.~36!,

2P~ l ,t50!5¹2F~ l !1¹@U~ l !F~ l !#, ~41!

2F~ l !5¹2T~ l !1¹@U~ l !T~ l !#. ~42!

These equations are exactly solvable, yielding rather com
cated expressions. However, to understand the scaling
of the solutions, it is useful to consider a simpler potential
the formU5u0 / l , which is equivalent to the full potentia
Eq. ~37! at l!L, with u05

3
2. Plugging in power law forms

for F andT in Eqs. ~41! and ~42!, we findF( l ); l2u0 and
T; l 22u0. For u05

3
2, *0

`F( l )dl;F(0) and*0
`T( l )dl;L3/2,

yielding, for long chains,

t;t0L
3/2. ~43!

The same asymptotic result is found using the full poten
of Eq. ~37!. The lifetime of a given marked loop is muc
shorter than that expected from a simple diffusion argum
t;L2 ~which corresponds to using no potential,U50, in the
above calculation!. This is due to the entropic bias of sma
loops to shrink, which compels loops to spend less time
‘‘random walk’’ motion as compared to the pure diffusio
case. Note that the power-law exponent 3/2 in Eq.~43! is
related directly to the prefactor of the effective potential th
is derived from the detailed steady-state solution.

From this result, one can readily derive the scaling of
ring center of mass diffusion coefficientD, using a classica
scaling argument@11#. Essentially, diffusion proceeds by th
transport of loops along the ring. Each loop takes a ti
t;Lu to travel a distance of orderR(L);Ln, the linear size
of the polymer. If there were only one loop on the chain
any time, the center of mass diffusion constantD0 would
obey

D0t5~R~L !/L !2, ~44!

where the right hand side represents the mean-square
placement of the center of mass arising from the transpo
one loop across a distanceR. In reality, the number of loops
present at any time is proportional toL. Hence the center o
mass diffusion constantD scales as

D;LD0;L2n2u21;L22, ~45!
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where the valuesn5 1
4 and u5 3

2 were used. The resul
D;L22 is consistent with the simulations and intuitive a
guments of Ref.@25#. It is remarkable that the diffusion co
efficient scaling is the same as in a linear reptating ch
@11#, though the microscopic ‘‘walker’’ responsible for th
motion has very different dynamics. In the case of a line
reptating chain, the exponents for the chain size and wa
lifetime, n51/2 andu52, are different from the ring case
but they combine to give the same scaling forD. The longest
relaxation time, in which the ring diffuses about one avera
ring size, scales asTmax;L5/2 ~compare to the linear reptat
ing chain resultTmax;L3) .

The relaxation behavior is very different from that of
linear reptating chain@25#. In the linear reptating chain, fo
most structures to relax, the head of the chain must rep
and free them, a process takes of the order of the lon
relaxation timeTmax;L3. In contrast, the loop mechanism
allows most structures to relax very quickly.

V. CONNECTION WITH SPONTANEOUS
SYMMETRY BREAKING IN 1D

In this section, we discuss the models of gel electropho
sis in the context of systems that display spontaneous s
metry breaking~SSB! in one dimension~1D!. It is well
known that in thermal equilibrium, symmetry breaking a
long-range order cannot appear in 1D systems with sh
range interactions. Recently, a simple nonequilibrium mo
that displays SSB in 1D was presented@34#. The Rubinstein-
Duke @9# reptation-tube model offers an additional intere
ing example of a 1D system with short-range interactio
which displays symmetry breaking. In this model, symme
breaking has a particularly simple physical meaning. C
sider a linear DNA chain with no tension or loops. It
typically aligned with the field@9#. There are two symmetric
configurations: either segment number 1 is at the chain h
or segment numberL is at the chain head. A finite chai
eventually flips between these two configurations. The fl
ping time, however, grows very quickly with the chain siz
in order to flip, the tail must reptate an order ofL steps
against the field, and the rest of the chain must follow it, a
thus the flipping time goes as;eaL2 with some constant
a. The chain is therefore effectively stuck in one of the tw
configurations and symmetry is broken in the thermod
namic limit.

In this example, as in the model of Ref.@34#, the mecha-
nism permitting spontaneous symmetry breaking depend
the presence of boundaries~i.e., the existence of a chain hea
and tail! and on a conservation law in the chain bulk~the
number of1 and2 particles is conserved by the bulk dy
namics when loops are not permitted!. The latter is seen to
be important by allowing loops, as in the present mo
~without tension which corresponds to long-ranged inter
tions!. Loops amount to pair creation and annihilation in t
bulk, and break the conservation law. Adding loops also c
cels the SSB: the chain is typically stuck in a symmet
hooked state~Sec. III A, Fig. 5!.

We note that an interesting case of SSB in a 1D syst
with periodic boundary conditions and with no bulk conse
vation of the order parameter has been presented@35#.



g
p
d
ila
st
.
ld
il
r
te
n
a
-
rta
ot
m
p

ar
th
ge

e
by
dy
b

s,
hu
ic
u
w

io
y
o

dy-
r.
ld.
un-
rs.
to
th.
ra-

est-
is
the
p
d
f
ef-

in
ery
es.
but
op
e
over
ly-
of
li-
t-
for
or

L.
ed

1792 55URI ALON AND DAVID MUKAMEL
VI. DISCUSSION

The role of tension and loops in the dynamics of rin
shaped DNA gel electrophoresis is studied. A microsco
model, which adds tension and loops to the reptation mo
of Rubinstein and Duke, was proposed. The model is sim
to reaction-diffusion models, with the addition of a intere
ing hierarchical pairing which represents the loop fingers

We predict that the mobility of open-circular DNA shou
saturate much as in linear chains. Tension serves to stab
a quasilinear conformation of the ring. In this regime, the
are many coiled DNA segments, screening the effects of
sion. The screening of tension by coiled segments is esse
for explaining the success of reptation models for line
DNA fragments@10,32#, which neglect both loops and ten
sion. It is suggested that tension and loops have, to a ce
extent, canceling effects. It is thus important to include b
effects in models of loop-mediated polymer dynamics. So
of the qualitative features of the motion of the ring are ca
tured by a simple mean-field theory.

The present predictions are difficult to check in stand
electrophoresis experiments in agarose gels in which
DNA rings become hooked on dangling ends in the
~‘‘hoop in stick’’ effect, Sec. III B!. An experimental situa-
tion which eliminates the effects of dangling ends is offer
by the microlitthographic arrays of posts introduced
Volkmuth and Austin@28#. These arrays were used to stu
electrophoresis of linear DNA, which could be observed
fluorescence microscopy. Since these two-dimensional~2D!
arrays have a floor and a ceiling attached to the post
ring-shaped DNA cannot become impaled by a post. T
the hoop in stick effect is negated. The present work pred
that the mobility of plasmids in such an obstacle array sho
saturate at a finite value, and not decrease exponentially
the ring size as in standard gels with dangling ends.

In addition, agarose gels exhibit a very broad distribut
of pore sizes. The present model pertains more closel
experiments on regular lattice, since the broad distribution
.
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pore sizes in standard agarose gels might well affect the
namical features and scaling laws discussed in this pape

The model is also applied to study dynamics in zero fie
The solution of the model in this case allows an exact fo
dation of some known scaling properties of ring polyme
The main effect of loops on the static chain properties are
allow many undulations and wiggles per unit contour leng
As a result, the ring adopts much more compact configu
tions~average sizeR;L1/4) than in the reptation case~where
R;L1/2). The dynamics have been studied using an inter
ing approximate equation of motion for marked loops. Th
equation seems to be a useful basis for analytical study of
effect of loops on polymer dynamics. The lifetime of a loo
was found to scale ast;L3/2, which is shorter than expecte
from pure diffusiont;L2. This is due to an entropic bias o
small loops to shrink and be annihilated. The diffusion co
ficient is found to scale as in the reptation case,D;L22,
though the behavior of the microscopic walker is different
the reptation and ring cases. The relaxation spectrum is v
different, with most structures relaxing on short time scal
These results were obtained for ring-shaped polymers,
should also be applicable to long linear chains in which lo
creation in the bulk is allowed. An exact solution of th
steady state is also possible in this case, showing a cross
between reptation and loop behavior as a function of po
mer length. This solution, as well as a more detailed study
the zero-field dynamics, will be presented in a future pub
cation. Finally, we note that the physically intuitive trea
ment of chain tension presented here may be useful also
describing different systems in which polymers in a melt
obstacle array move under external forces.
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