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Gel electrophoresis and diffusion of ring-shaped DNA
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A model for the motion of ring-shaped DNA in a gel is introduced and studied by numerical simulations and
a mean-field approximation. The ring motion is mediated by finger-shaped loops that move in an amoebalike
fashion around the gel obstructions. This constitutes an extension of previous reptation tube treatments. It is
shown that tension is essential for describing the dynamics in the presence of loops. It is included in the model
as long-range interactions over stretched DNA regions. The mobility of ring-shaped DNA is found to saturate
much as in the well-studied case of linear DNA. Experiments in agarose gels, however, show that the mobility
drops exponentially with the DNA ring size. This is commonly attributed to dangling ends in the gel that can
impale the ring. The predictions of the present model are expected to apply to artificial two-dimensional
obstacle arraypW. D. Volkmuth and R. H. Austin, Naturg@58, 600(1992] which have no dangling ends. In
the zero-field case an exact solution of the model steady state is obtained, and quantities such as the average
ring size are calculated. An approximate treatment of the ring dynamics is given, and the diffusion coefficient
is derived. The model is also discussed in the context of spontaneous symmetry breaking in one dimension.
[S1063-651%97)12601-0

PACS numbgs): 87.10+e, 36.20.Ey, 82.45:z, 05.40+]

[. INTRODUCTION and emphasize the effect of loops, here we consider DNA in
the shape of a ringppen-circular DNA'18]). The DNA ring
Gel electrophoresis is a widely used technique for sepacan move around the gel obstacles only by loops, sending out
rating DNA fragments according to siz&]. The separation fingers in an amoebalike fashion. To our knowledge, there
resolution is limited by a saturation of the mobility at large have been no theoretical studies on gel electrophoresis of
DNA size. Separation of large DNA fragments has beeropen-circular DNA, despite the fact that in practical applica-
made possible by pulsed-field gel electrophoréfi8]. In  tions, ring-shaped DNAplasmids is often analyzed by gel
view of the phenomenal successes of these techniques, atectrophoresis, and shows behavior different from that of
analytic approach to the basic underlying motion of the moldinear DNA fragment§19-22.
ecule through the gel is desirable. The behavior of ring polymers in the absence of an elec-
Most theoretical treatmen{gl—10] of the motion of the tric field is also of interesf23—25. This problem is related
DNA through the gel are based on the reptation congefjt  to the behavior of a melt of ring polymers, and also to elec-
The DNA is pictured as moving through an impenetrabletrophoresis in the weak-field limit through an Einstein rela-
tube defined by the surrounding gel obstructions, with theaion. The diffusion of ring-shaped polymers in a lattice of
motion mediated by a snakelike reptation of the polymerobstructions has been treated by numerical simulations and
ends. Reptation has proven very successful in describintheoretical argumen{®5]. An exact treatment of the statics
equilibrium dynamics of polymers in gels and melts. Simu-and especially the dynamics of ring-shaped polymers in zero
lations[12] and experiment$13], however, have indicated field is, however, not available.
that for sufficiently long chains undergoing electrophoresis, In this work, a model for the motion of ring-shaped DNA
an alternative mechanism of motion is important: the forma-in a gel is introduced and studied numerically and analyti-
tion of finger-like loops or leaks through the reptation tube.cally. The ring motion is mediated by loops that finger be-
These loops(sometimes also called hernias, hairpins, ortween the gel obstructions. This model, described in Sec. Il,
kinks) constitute a protrusion of the DNA chain through the constitutes an extension of previous reptation tube treat-
walls of the reptation tube in a doubled-up loop. Loops havements. It is instructive to first study the model neglecting the
been included in some recent simulations of linear DNAeffects of tension transmitted along the DNA polymer.
fragments undergoing gel electrophorddid—16. An addi-  Monte Carlo simulations of the model, summarized in Sec.
tional important effect, that is often neglected in treatmentsll A, show that the chain mobility in this case decreases
inspired by equilibrium reptation theory, is tension transmit-exponentially with DNA size. This is due to the formation of
ted along the DNA chaifi12]. Under a driving electric field, hooks which reduce the mobility. This behavior is modified
strong tension forces can dramatically affect the polymemvhen tension is taken into account. In Sec. Il B, tension is
motion[16,17). added to the model as long-range interactions over stretched
In linear DNA chains, both loop motion and ordinary rep- regions of the polymer. Tension increases the unhooking
tation of the chain ends are possible. In order to separate ousites, and stabilizes a ring conformation aligned with the
field. This causes the mobility of long ring-shaped DNA to
saturate to a finite value, much as in the well-studied case of
*Present address: Depts. of Physics and Molecular Biology, Prinlinear DNA. Experiments in agarose g¢lk9—22, however,
ceton University, Princeton, NJ 08540. show that the mobility drops to zero with the DNA ring size,
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b~100 nm, while in recently introduced artificial obstacle
arraysb~1um [28]. The DNA is represented as a chain of
L segments, each of one persistence lengt®s@ nm. The
segments may be stretched, when the polymer threads
through adjacent pores, or coiled, when the segment is con-
tained in one pore. Each configuration of the polymer is rep-
resented by the positions of the successive cells that the
polymer threads. A simplified description of the chain is
coded by the projection along the field direction of the dis-
placement between segment ends. This displacement can be
either +b, when the segment threads between two pores in
the field direction,— b when it threads two pores against the
field direction, or 0 when the segment is coiled in one pore.
Thus the configuration is reduced to a one-dimensional lat-
tice of L sites. Each sité corresponds to a DNA segment,
and has a state;, which can be+, —, or 0, as demon-

FIG. 1. Configuration of a DNA chaitheavy ling in a gel, strated in Fig. 1. Note that in this description some informa-
defined by a periodic lattice of gel porédotted lineg. The DNAis  tion regarding the microscopic configuration is lost. How-
divided into persistence length segments, numbeéred,2, . . ., L ever, it provides a convenient way to model the dynamics
(in this casel =8). The reptation tubdight line) is defined by all  [7-9].
pores through which the DNA threads. The configuration is en- The chain reptates by the motion of the coiled, lax seg-
coded using a+ for segments that are stretched between two poregnents through the chain. In an aquaeos solution, the DNA is
with the field dil’ection,— for SegmentS stretched against the field assumed to be unlformly Charged The forces act|ng on each
direction, ar_wd 0 for <_:oi|ed segments in the_same pore. The dissegment are an electric fore= QE, whereQ is the charge
played configuration is thus- 0+ +00—.+ fOI’.I:.l, e ,8.M0\{e per segment ancE is the field strength, and a thermal
ﬁj gg”f;‘fgcf t;’;g ?nscfsgdoacrgurrzpvtv?ttﬁo?agofﬁiermrfftﬁm Brownian noiseFy, of the order ofkT/b. These forces are

' : represented in the model by the following rules. At each time

0+— +0 is against the field direction, and is given a smaller rate - . - .
: step, a pair of sites is chosen at random, and a move is made
g. Move B corresponds to the formation of a lodpak through the . : )
with the following rates:

reptation tubg It is represented by pair creation-80+ ,—.

with large rings hardly penetrating into the gel. This is com- +0-0+atrateq, Oh—+0 atraep, (1)

monly attributed to the rings becoming impaled on dangling
ends or other impurities in the gel. The predictions of the
present model are expected to apply to artificial tWo-yhijle + — or —+ pairs are stuck, since they represent two
dimensional obstacle array28] which have no dangling = giretched segments hooked around a gel obstseteFig. 1
ends. In Sec. Il C, the polymer motion is qualitatively de-poves in the field direction are favorably biased over the
scribed by a mean-field treatment. In the zero-field case, digpyerse moves, through the ratesand q. These rates are

cussed in Sec. IV, an exact solution of the model steady stat§atermined. in the case of weak fields by local detailed-
is obtained, and quantities such as the average ring size agg|ance coﬁdition@] such as '

calculated. In Sec. IV B, an approximate treatment of the

—0—0— atratep, G6-——-0 atrateq, (2

zero-field ring dynamics is given, and the diffusion coeffi- pP= woexp e/2), 3
cient is derived. This gives an analytic foundation to previ-
ous scaling argumen{®5], and suggests a framework for q=weexp — €/2), (4

analysis of dynamical features of driven polymers. In Sec. V,
the model is also discussed in the context of spontaneoushere w, is a microscopic rate and=QEW/kT. Note that

symmetry breaking in one dimension. this is a nonequilibrium dynamics and that it does not obey
full detailed balance. The ratio between these rates is thus a
Il. MODEL FOR DNA IN A GEL INCLUDING LOOPS Boltzmann factor of the ratio of electrical to thermal energy,
We present a model for a charged polymer ring moving in p/g==exple), e=QEWKT. (5)

an electric field in an array of obstaclés.g., a gel The

model is based on the Rubinstein-DukBD) approach These rules, along with rates for injection-6fand — at the

[7-9], and is extended here to include loops, which aréhead and tail of the linear chain, define the Rubinstein-Duke

hairpin-shaped excursions out of the usual reptation tubgnodel[8,9].

Loops are crucial for polymers in the shape of a ring, in We now extend this model to account for loops. A loop

which the motion through the surrounding obstacles may bamounts to a projection of the chain from a pore with at least

accomplished only by loop fingering. two coiled segment&wo adjacent O sitgsnto a new pore,
We begin by describing the RD model for reptating linearthreading one segment out of the pore and another segment

polymers. We then extend the model to include loops. In thdack to the original poréfor example, moveB in Fig. 1).

RD model, the gel is idealized as a lattice of point obstaclesThis corresponds to a pair creation move-9& —. The re-

with pore diameteb, as shown in Fig. 1. In agarose gels, verse annihilation move- ——00 corresponds to the loop
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o RD model which has the three statés —, and O for each
. site, but no pairings.

‘ The loop creation and annihilation moves, which supple-
ment the reptation moves of Eq4) and (2), are

00—+ ,— atratec, 00— — + atratec’, (6)
+,——00atratea, — ,+—00atratea’. (7)
The symbol, denotes pairs of+ and — that have been

"-f:,__ % created togethegiconnected pajr The loops tend to grow, as
the field bias pushes the’s to the left and, the-'s to the

e i right. The loops may develop subloops, and a hierarchy of
MUU ﬂ loops may form. An example is shown in Fig. 2 for a ring-
shaped polymer. Thus the polymer can assume a highly
ramified shape, with a hierarchy of loops of different sizes.
The model as described above neglects an important
I;})_hysical effect: the tension transmitted along the chain. As

tains several branching fingers, and is encoded as shown by a striig © /" below, this proves to be very important in the elec-
of +, —, and 0's along with their pairings into loops. Ring-shaped fophoresis of ring-shaped DNA. Tension acts as a long-
DNA can move through the gel only by the annihilation and cre-ange effeptlve interaction, and is included in the model as
ation of loops. described in Sec. Il B.

FIG. 2. A configuration of a ring-shaped DNA in the gel. The
segments are numbered counterclockwise. The configuration co

retracting and forming two coiled segments in a single porelll. GEL ELECTROPHORESIS OF OPEN-CIRCULAR DNA

After a pair is createdy and— can diffuse according to the . _ . .
RD rules. An important feature of the model is that pairs of _JUSing the model, we studied gel electrophoresis of ring-
+ and—, which are created together, are tracked as a cor2h@Pedopen circulaf18])) DNA. Periodic boundary condi-

nected pair throughout the dynamics. Eaehin the configu- tions are Fhus imposed in th? '.“Ode'- The ring i.S not concat-
ration has a unique- to which it is connected. Keeping enated with any gel obstacld is prepargd outside th? gel
track of such connections between pairs is necessary in ordg‘Fd moves into t_he gel under the field !nfluehdé/e first

to track the loop finger hierarchy. To see this, consider a porg*.LJOIy the model in the absence o_f tensmn_by Monte Carlo
with many coiled segments. A number of loops may beslmulat_lons. The treatmen_t of tension, and_lts effects on the
formed, projecting into different neighboring pores. An im- dynamlcs,.are. pre;ented in Sec. Il B. A simple mean-field
portant point is that+'s and —'s from different loops treatment is given in Sec. lIl C.

cannot annihilatelassuming that several loops originating

from thea pore always project to different neighbors, a rea- A. Monte Carlo results

sonable assumption for pore lattices of high coordination |t is instructive to first study the model as described in
numbej. Thus pairings oft’s and —’'s must be tracked: sec, II, neglecting the effects of tension. In order to investi-
each+ can annihilate only with the unique to which itis  gate the model, we performed Monte Carlo simulations, typi-
paired. Each configuration is defined by theand — and cally usinga=c=1,a’=p, ¢'=0, p/q=1.01-2, and ring

0 sites, along with their pairing to loogfig. 2). Only pair-  |engths up toL=100. The mobility as a function of time is
ings in which the hernia pairs are nested are allowed, aghown in Fig. 4. It is seen, that the mobility displays a spiked
shown in Fig. 3(pairing lines may not cross each other pehavior: the system is effectively in one of two states: one
Starting with an allowed configuration, the loop creationwith a positive mobility, and one with a zero mean mobility.
rules assure that the configuration at each subsequent timef$e average lifetime of the zero-mobility states growd.as
also allowed. The phase space is larger than in the originghcreases.

The nature of the dynamics is clarified by snapshots of the

a) Allowed configuration ring configurations in the two states, shown in Fig. 5. It is
seen that the ring cycles between quasilinear and hooked
—!— +0O—00 T T _!_ states. The high-mobility phases correspond to the quasilin-

ear conformation in which the ring is aligned with the field
[29]. The conformation of effective charges in the model that

b) Forbidden configuration represents this conformation is shown in Fi¢a)6 This con-
++-0O0—-0O 00—+ formation is short lived, because it develops an instability: a
' i / loop that buds on the side of the quasilinear ring grows into

a hooked configuration with two stretched arms, pinned over
FIG. 3. An example of a configuration ef,—, and 0 chargesin an obstacldsee Fig. €)]. In this phase, the ring is stuck,
the model.(a) One of the allowed pairings into loop&) A forbid- ~ and there is zero mean mobility. The hooked state persists
den pairing, where the loops are not nested. Such a configuratiolr a long time. The ring unhooks by one of the arms retract-
cannot be reached from an allowed configuration by the model dying by fluctuations, until a new, quasilinear, high-mobility
namics. shape is attained. This explains the burstlike structure of the
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x10° a) Quasilinear Conformation

ot tpt——————
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b) Two-Armed Hook
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FIG. 6. Configuration of charges and loop pairings in the model
that corresponds t(a) a quasilinear conformation, ar(l) a hook
2r 1 with two equal arms. The quasilinear conformation typically also

includes many 0 sites, as well as small branching subloops.

o 100 200 300 400 500 600 700 800 900 1000 B. Effect of chain tension
Time [Monte Carlo Sweeps]

Mobility — Tension Neglected
~

phase, tension plays a crucial role, as described in Sec. Il B.

It is important to consider the effects of tension transmit-
FIG. 4. Monte Carlo simulation results of the model including ted along the chaifl2,16, 17, 3Q The main effect of ten-

loops but neglecting tension, for a ring of siZe=52, with ~ Sion is to increase the unhooking rates of stretched hooks
p=0.56,q=0.5, andc=a=1. The mobility of the ring(center of ~ dramatically. It acts as a long-range interaction between
the mass velocityis shown as a function of timgn sweeps, where coiled segment§16]. Tension in the context of gel electro-
one sweep equals single-bond moves The mobility is seen to  phoresis of linear DNA was treated in a previous st{t],
have a spiked behavior, where the mobility is mostly zero withwhere coiled segments were allowed to make long-ranged
intermittent periods of motion. hops along the chain. The present treatment simplifies this by

using only local hops. In addition, the present model extends
mobility. In the absence of tension, the mean mobility Ref. [16] by taking into account the effect of tension on the
decreases exponentially with (Fig. 7). This is because the loop creation and annihilation rates.
unhooking rate, by which an unstretched segment moves
from one arm to the other, is exponentially small, since it
takes on the order df steps against the field for the segment
to escape the arm’s effective potential trap. Similar dynamics
can also occur in linear chairfd2,16. In the unhooking osk

o
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FIG. 7. Mobility of a ring-shaped DNA fragment as a function
of size. Monte Carlo results for two field strengthis=2 (light
lines), andE=1 (bold liney, are shown with loop creation and
annihilation ratesa=e~! and ¢=0.3. Units are such that

FIG. 5. The ring configurations between one mobile burst andQb/kT=1, so that the dimensionless fie¢d= E. The mobility of
the next. The ring begins with a quasilinear shape aligned with the¢he model including tensioffull lines) decreases with the chain
field, which quickly develops an instability to secondary loops andlength for short chains, and then shows a saturation. For stronger
goes to a two-armed hook. The hoofis the absence of tensipn fields, the asymptotic mobility is higher, and the chain lergthat
are stuck for long times. Unhooking occurs by the retraction of onewhich the mobility saturates is smaller. The results of the model
of the arms by fluctuations against the field, until a quasilinearwithout tension(dashed linesare close to the results with tension
shape with a nonzero mobility is reached again. The spikes in théor short chains I(<L*). However, without tension, an exponen-
ring mobility in Fig. 3 are thus explained by the cycle betweentially decreasing mobility is predicted for long chains, because of
quasilinear and hooked conformations. the formation of hooks.
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In order to model the effect of tension, we note that undeiis —0. To evaluate the effective field for this pair, we sum
the influence of an electric field the charged chain behaveg in the two sites to the right of the paithese sites cancel
like a chain moving in a gravitational field coupled to its each other where we reach a loop tip. The total effective
weight. The tension transmitted along the chain is relaxed aforce isFq=0. At sites 10 and 11, where the configuration is
coiled (0) segments and at loop tips-(,— and—+ paired 0+, tension accumulates along a three-site stretchegk-
at neighboring sites Note that unpaired neighboring— or  gion to the right of the pair, which terminates at a loop tip,
—+ sites represent segments of DNA chain which areandF ;= 3e.
draped over a gel obstruction, and therefore are capable of The movement rate; can be related to the local tension
transmitting tension. We define an effective field for eachforce F; from a consideration of the thermal and friction
pair of sites, which corresponds to the tension generated biprces on the string. The motion of the DNA segments
regions of stretched chain on both sides of the sites. Thighrough the solvent is such that viscous drag forces are much
results in a movement rate; for the pair of sitesj and larger than any inertial teril2,17. The behavior of the
j +1, which depends on long-range interaction between difehain under thermal noise can be treated using a Fokker-
ferent sites, as described below. At each step of the simulé?lanck approachl16], using a Smoluchowski equation for
tion, a pair of site§ andj+1 is chosen at random. Pairs at the string motion along the tube contour, which includes a
which there is an allowed move are of three tyfescoiled  Brownian term and a friction coefficient proportional to the
sites adjacent to a stretched site,#;;=0—,—0,0+, or  string’s length. In the present work we propose a simpler
+0; (b) two coiled sitese;, ;. ;=00 (creation movg or  physical model, which is valid at both the strong- and weak-
(c) aloop tipgj,¢j1=+,— or — + (annihilation move.  field limits:

We will refer to such pairs alaxed pairs If the pair is not

one of these three types, it remains unchanged. If the pair has | riexp(Fy),  F;j<0
an allowed move, the move is performed with the rate @i~ ri(1+F;,), F;>0,
and the states of sitgg + 1 are accordingly adjusted. A new

pair is chosen and the process is repeated. wherer | is equal to a microscopic raia, for pairs where a

To derive the movement rate for pajr (sites j and  coiled segment can moved(,; 1=+0,0+,0—,-0),
j+1), »;, we consider the tension transmitted along therj:c0 for pairs where a loop can be created
DNA due to stretched regions of chain on either side of thg ¢, , ¢;,,=00) andr;=a, where a loop can be annihilated
pair. Since the tension accumulates along these regions, tm@j ,}j+1=+,—,—,+). At all other pairs of sitest;=0,
local tension field is proportional to the net displacement insince no other moves are allowed. The constantsc,, and
the field direction of these stretched regions. The stretched0 are the microscopic rates of the various processes. Equa-
regions terminate at either a coiled segment (0 sitex loop  tion (11) goes to a Boltzmann factor for low effective fields,
tip, since these are the points at which the chain tension ighere it represents local detailed balance. At high effective
relaxed. The effective tension force acting on a pair consistfield strength, the movement rate becomes linear in the ef-
ing of a coiled segment adjacent to a stretched onegective field strength. This is expected, since at large fields

(11)

(0,j4+1), with ¢; ., ==*1, is thermal fluctuations become unimportant and the local chain
Ky velocity becomes proportional to the local fo{de?]. Equa-
Fo1l, E ) ) tion (11) allows loop annihilation rates to be affected by
e g™ chain tension, with annihilations at loop tips flanked by long
regions stretched in the field direction given a high rate.
wherek; is the closest succeding site to sjte 1, which is a The model without tension, described in Sec. Il, can be

member of a relaxed pair, and the dimensionless externdecovered from this model, by taking=j andk,=j+1 in
field is e=QEWKT. Similarly, for a (¢;,0) pair with Egs.(8)—(10). This corresponds to the screening limit, when
¢;=*1, the effective force is given by the density of coiled segments is so high that there appear no
extended regions of stretched segments in which tension can
i develop, and the field at each bond is due to the external field
Fi=—3e€ > bm (9)  alone. In this case, the movement rates are related to those of
K the model without tension described in Sec. Il at low fields

(e<1) via p=wee’, q=wee ’ c=c, a=age ¢,

wherek; is the closest precedmg site to .S!teNh'Ch ISa c'=cp, anda’=age’. It is seen that in this limit, the rates
member of a relaxed pair. The force acting on a loop tlpsatisfy Eq.(5)
(Hu= or =+ pairs is Tension causes hooks to have a much smaller effect on

Ky i the mobility. Monte Carlo calculations, including tension at
F=Ll¢ _ , 10 two different field strengths, are shown in Fig. 7. We find
12 m:2j+1 P mzkz P (10 that the ring mobility saturates at large DNA sizes, much as

in the well-studied case of linear DNA fragments. It is inter-
with similar definitions ok; andk,. (We note that the model esting to note that the ring arranges itself into a quasilinear
can also be applied to linear chains, where additional pointshape in the size regime studied. Here, coiled segments are
at which tension is relaxed are the chain epds. very frequent—roughly one-third of the segments are coiled.
As an example, consider the configuration of Fig. 2. ThisThustension is screened by the coiled segmemtd has a
configuration contains one coiled segment at s$ielO, very small effect during most of the dynamics, since it is
¢10="0. Consider sites 9 and 10, at which the configurationmportant only in long, continually stretched pieces of the
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chain. Only when a side-loop forms, and a hook begins to be Density of Coiled Segments
created, does tension come into play, and essentially stabi- 1 , - - - - : '
lizes the quasilinear shape aligned with the field. We note 08
that for very large rings, branching effects similar to those 08}
discovered in large linear fragments in Reif6], are likely to

04
occur, though the ring mobility should remain constant. 02?"% o o R .
The screening of tension by coiled segments is very im- ' . . ‘ . ‘ ° . . 9
portant in explaining the success of reptation tube models for % 1 2 8 4 5 6 7 8 8 10
. . . . . cla
linear DNA which seem to describe experiments on linear Mobility
DNA fragments quite wel[10,32, though the models ne- 08 T

glect both loops and tension. The present results suggest that o4}
when including loops in a model of polymer dynamics, itis = os
essential also to take tension into account, as these two ef- |F°° °© o °
fects have a canceling behavior, respectively increasing and
decreasing the hooking rates. . . . . . . . ‘ .
The predictions of the present model that the mobility %1z s 4 s 6 7T 8 9 W0
saturates with the ring size disagree with experiments. Stud- e
ies of open-circular DNA(plasmid$ run through agarose - Density of coiled d mobili i
gels show that, above a certain DNA size, the plasmids are_ Gd' %NAensnyfo C?_'e ?etﬁmerlt_;s, afnl mo "tyt’.“’ 0 r(;ng' »
“stuck at the wells” and do not enter the ggl9-22. The shape as a function ot the ratio otfoop creation and annini-
. . - lation ratesc/a. The ring size isL=40, the field strength is
explanation offered by Mickel, Arena, and Bali&8] is that —5 andth inilati is held "1 ah
the rings become hooked on dangling ends in thegaton- E=2, and the annihilation rate is held constarte’ . Shown are
- ) " Monte Carlo simulation results of the model including tensios),
nected ends of the gel fibers or other impurities that penetratg, : .
o L X S0 d the mean-field predictiaftine).
the poreg which impale the ring*“hoop in stick” effect).
The ring can unhook by a fluctuation which can overcomeys sretched segments at the leading end may always be an-
the field pulling the ring. The probability of such a fluctua- pinijated.
tion is exponentially small in the ratio between the electric
force pulling the ring and the thermal forces, and the mobil-

041

The balance between annihilation and creation yields

ity is p=1/(1++/c/a). (13
w~exp—QENLKT). (120  The mobility u, equal to the mean center of mass displace-

ment per unit time, is given by an average over all the con-

The saturation of the mobility predicted in the present moderlgl“lr‘%o.nS a!lowmg movement, Welghte_d _by_the respective
) . rates. Since in steady state the loop annihilation and creation
could be checked experimentally on recently introduced ar-

e . . . moves balance each other, we have, in the simplest mean-
t|f|C|aI.two-dlmenS|ona(2.D) arrays oflobstacle[$28] with N0 field approximation, that the mobility is proportional to the
dangling ends that can impale the ring, as suggested in S

VI e&obability of finding a stretched segment adjacent to a
' coiled one:

C. Mean-field treatment pu=(pP—q)p(l-p), p=1/(1++cla). (19

In the presence of tension, the DNA is found mostly ina  The qualitative features of the mobility are reasonably
quasilinear conformation aligned with the field, with many described by the simple mean-field theory, as shown in Fig.
coiled segments. The coiled segments essentially screen teg-where the density of coiled segments and the mobility as a
sion. This allows for a simple and local mean-field treatmentynction of the ratio of loop creation and annihilation rates
of the DNA motion. L . c/a are shown. At a high ratio of creation to annihilation

Consider a quasilinear chaiffrig. 5, rightmost and left- yatesc/a, the chain is dense with stretched segments, and the
most configurations In this configuration, loops are annihi- mopjlity is low. At low c/a, there are few stretched segments
lated at _the upfield end of the ring. The coiled sggmentqhat can move, and the mobility is again low. Around
(0’s) which are generated move down to the leading endg/a—1 where the density of coiled segments is around one-
where a new loop is formed. The density of coiled segmentsyaif, the mobility is at a peak. The simulations show similar
p, is given by a balance of loop creation and annihilation.qalitative behaviors. The mean-field mobility overestimates
The rates for these processes are obtained in the mean-figlgk full model mobility by a factor of about 2. This is prob-
approximation by neglecting correlations: Loops are create@p|y due to processes that impede the motion, such as hook-
(at the leading endwhen two coiled segments are adjacent,ing and pair creation in the bulk of the chain and not only at
at a ratecp?, and annihilatedat the upfield endwhen two  the head and tail, that are neglected in the mean-field treat-
stretched segments are adjacent at agfie— p)2. In this ap-  ment.
proximation for the annihilation rate, the assumption that the
ring is quasilinear is used, since a stretched segment can IV. ZERO-FIELD CASE
annihilate only with its unique pair. In a random configura-
tion the pair would have a small chance of being adjacent. We now turn to the case of zero electric field. This case is
Here we assume that, in the quasilinear configuration, a paimportant as a question in classical polymer phys&%24:
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what is the effect of loops on the statics and dynamics of a 1-e Sy 1+ (e Sy 1-1)2—4(2cla)e 5y 2
chain in a gel or melt at equilibrium? In addition, the zero- g(s)= 2(2cia) 7 2 5
field diffusion can be related to the low-field electrophoretic K (18)
mobility via the Einstein-Nernst relations.

The zero-field case offers a significant simplification in The smallest value of; for which g(0)=3u(L) exists is
the model: tension can be ignored in this case, and the modg)=2,/2c/a+1. At this value of », for small s,
described in Sec. Il is used, with=p, c=c’, anda=a’.  g(s)~g,+g,s"2 This corresponds to the following asymp-

The probability of a given configuratio@, P(C), is gov-  igtic form of the partition sum at>1:
erned by the Master equation

N(L)=NoL %% 2y2c/a+1)", (19
dP(C)/dt= 2>, {W(C'—C)P(C')~W(C—C'")P(C)}, with
CI

(15 No=(4\/mcla) Y1+ 2+2c/a)[\2c/a+4cl/a]v2
20
whereW(A— B) is the rate of transition from configuration 20

A to B. A solution to the master equation is found which This allows a derivation of steady-state densities, such as
satisfies detailed balance. Each move which preserves thg the density of coiled segmeni®'’s). This density is given
number of stretched segments, sucht&®—0+, is exactly  from the construction of the recursion relation E&j7) sim-
balanced by its reverse move. Moves where loops are creatgdy by those configurations at which a given site is 0, com-
or annihilated are balanced by the reverse move, with apared to the total weight of the configurations:

extra factor related to the creation and annihilation rates. A

configurationA which has a 00 at a certain bond, can, in a p=N(L—1)/N(L)=(2y2c/a+1)~". (21
single move, go to or be reached from only two configura- ) o i .
tions B andB’, which are exactly the same Asexcept that The loop size dlstr|_but|onn(l), defined as the pro_babllllty
they have either & ,— or a—,,+ at the bond. The solution that & selected site belongs to a loop of sige is

for the probability of configuratiol€ is QS)IZT/(;)N(L_Z_D/N(L) [see Eq. (17)]. Thus, for

P(C)=N(L) *(c/a)"®, (16) n(1)~Nol ~32 (22

wherec/a is the ratio between loop creation and annihilationThis suggests that the ring polymer adopts a ramified fin-
rates, anch(C) is the total number of loops in the configu- gered shape, with a power-law spectrum of finger sizes.
ration C. In the steady state, all configurations have equal

probability, up to a factor depending only on the total num- A. Average ring size

ber of loops in the configuration. This solution is remarkable : .
in that, although there are strong interactions between differ- 1€ €xact solution also allows a calculation of the mean
ent loops, the probability of each configuration depends only12€ Of the ring at zero field. The radius of gyration serves as
on the number of loops and not their relative positions and convenient measure of the ring size: it is defined as the
sizes. The normalization factd¥(L)==c(c/a)"© is con- mean-squared distance between two s{ies, the sum of

nected to the number of allowed configuraticiasly con- nu(rjn.ber of+d5|tes mlnuds the ntljlmberf_of S|Fes bet\gi/eeiimd
figurations with nested loops are allowed, as shown in Figd"d) squared, averaged over all configurations and a
3). N(L) satisfies the recursion relation 1). To evaluate the radius, we define the function

. G(i)=2, R&()P(C), (23
N(L)=N(L—1)+(20/a)|20 N(DN(L—2-1). (17 C
where
The terms on the right-hand side can be understood as fol- i 2
lows: given a ring of size, choose a site. The first term R2(i)= 2 & (24)
corresponds to the case where the site contains a 0, and thus ¢ = I N

the configurations of loops can be mapped to a ring of size

L—1 by deleting the site. The second term is the case wherehere ¢, is the state of sit& in configurationC. That is,

the site is a member of a loop with its pair at a distance ofG(i) is the average over all configurations of the squared
| +1 sites(a loop of sizd). The factor 2 in Eq. 17 is due to distance between the two “test sites” 1 andlhe radius of
the two possible assignments #f and — charges to a loop gyration R is simply given by the root of the mean of
pair, which have equal probabilities in the absence of ar5(i),
electric field. The valuedl(0)=N(1)=1 are supplemented

to this recursion relation. Solving for the asymptotic form for _ .
N(L) at L>1, we consider the function(L)=5""N(L). RP=L7*2 G(i). (25)

For sufficiently large# it has a finite integral. Using a

Laplace transform ofi(L), g(s)==_ou(L)e S inthe re-  We construct a recursion relation f@&(i), noting that the
cursion relation Eq(17), we find[33] only contribution that does not average to zero is from un-
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closed loops in the interval between the sites. Since there is B. Dynamics of a ring
no field, each site on a loop can betaor a — with equal
probability. The mean-squared distance, averaged over
assignments of- and — to the loops, is just the number of
unclosed loops. To build a recursion relation @fi), we g0 propapility of finding the loop at size at timet. The loop
from an interval of sizeé — 1 to sizei. Thus, to the interval of - .4 grow if there is a 0 adjacent to the loop from the outside,
sites1...i—1 we add one site, which may either be a 0, anq jt can shrink if there is a zero adjacent to the loop from
belong to a loop that closes outside the interval, or close ong side. \We make the approximation that these probabilities
of the open loops in the interval. Thus we divide all possible,,o given by the corresponding steady state probabilities.
configurations into three group€y, in which sitei isina 0 Tpis approximation is a good one for large loops. This is
state;Cy, in which sitei belongs to a loop that closes outside pecause the motion of the loops is diffusive, and hence many
the interval; and configuratioBy, in which sitei pairs with  configurations of the ring segments inside and outside the
a site inside the interval, thus closing a loop. In configurationmarked loop are sampled on the time scale of the effective
Co. Rz(i)=Rg(i—1). In configuration C;, Rz(i)  Joop motion. The evolution equation for the size of the
=hRé(i —1)+1. In configurationC,, R&(1)=R&(i—1)—1.  marked loopP(l,t) is

Thus

The solution for the steady state allows a rather accurate
aé!pproximation for the polymer dynamics. We consider the
motion of a marked loop on the ring. We defiRél ,t) as the

P(1,t)/at=pi(I1 + D)P(I+ 1)+ po(1—=1)P(1—1})
G(i)=2 Re(i=1)P(C)+ 2 P(C)~ 2 P(C). =[pi()+po(HIP(LY), (3D)
1 2
(26) wherep;(l) andp,(l) are the probabilities of a zero adjacent

to the size-l loop from the inside and outside, respectivaly

This leads to the recursion relation . .
microscopic rate constant has been factored out of the equa-

L-2 tion so that each move take one time Wnit the bound-
G(i)=G(i—1)+(2c/a) 2 N(DN(L—2-1) aries, the equations have terms corresponding to the annihi-
I=i-1 lation of the loop, which is possible when it is of size0 or

i—2 |=L—-2:
2 N(l)N(L_Z_l)}/N(L)' @ PO/ at=p/(1)P(L) —[a+ po(0)]P(0L), (32)

The boundary condition i&(1)=1—N(L—1)/N(L), since IP(L—21)/t=po(L—3)P(L—3})
the mean-squared displacement due to a single site is just the ’ ° ’
density of uncoiled segments—Jp. G(i) rises to a peak —[a+pi(L=2)]P(L—-2}1). (33

wheni=L/2, and then drops off to 0 at=L, because the

ring is closed, and going around the ring the mean displace- The main idea of the present approximation is to use the
ment must go to zero. Going to the continuum limit, andexact steady-state solution to estimate the probabilities of
using the symmetry of5(i) aroundi=L/2, we find motion for the loop. This yields

dG(i)/di=(2c/a)N(L)‘1fL7iN(I)N(L—I)dl. (28) pi(N=NI=1)/N()~p(1+ 3171, (34)

po(D=N(L—=1=1)/N(L=1)~p[1+ 3 (L—1)""],

For largei, using the asymptotic form dfi(L) found above (35

[Eq. (19)], the integrals involved in calculating (i) can be

performed analytically. This yields where the asymptotic forms are validlat1 andL—1>1,

-1
G(i)=8(2¢c/a)Ng\iVL—i/L, 29 and p=(2y2c/a+1) *. Note that smaller loops have on
(1)=8( ) 0\/— L @9 average more zeros inside them than larger loops. This is an
showing that the mean maximal excursion of the ring isentropic effect, due to the larger number of loop-pairings in a

G(L/2) L. Integrating oveiG(i), one obtains large loop. Thi_s creates a bias for small loops to shrink, an
effect that has important consequences for the ring dynamics,
R=/m(2c/a)NoL Y4 (30)  as shown below.

In order to analyze the scaling of E®1), it is convenient
This scaling is valid for long chains. The radius for finite to turn to a continuum form
chains can be readily found from the recursion relatidg
and (27). Thus the ring adopts a much more compact con- aP(1,t)/at=pV2P(I,t)+ pV[U(HP(I,1)] (36)
figuration than the linear, reptating chain, in whigh: L2
This form is valid for chains small enough that excludedsupplemented with appropriate boundary conditithe ex-
volume effects can be neglectg?b,31]. An intuitive argu-  act form of the boundary conditions do not affect the scaling
ment predicted th&®~ LY scaling[26,27), by mapping the results obtained belowThe potential, due to Eq$34) and
ring to a randomly branched graph. The exact solution of35),
present model allowed us to derive this scaling exactly, from
a steady state of a dynamic model. uh=3[1"t—(wL-n"1, (37)
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corresponds to the bias of small loops to shrink. Consider thevhere the valuesv=3 and #=3 were used. The result

case of a marked loop created at titre0. Thus the initial D~L~? is consistent with the simulations and intuitive ar-

conditions areP(l,t=0)= (I =0). We define guments of Ref[25]. It is remarkable that the diffusion co-
efficient scaling is the same as in a linear reptating chain

F(l)= ij(I,t)dt, (38) [11]_, though the m_icroscopic “waker” responsible for _the
0 motion has very different dynamics. In the case of a linear

reptating chain, the exponents for the chain size and walker
o lifetime, v=1/2 and#=2, are different from the ring case,
T(H= fo tP(l,t)dt. (B9 put they combine to give the same scalingBorThe longest
relaxation time, in which the ring diffuses about one average
Thus the mean lifetime of the marked loop is _ring sizg, scales a8~ L>? (compare to the linear reptat-
ing chain resulfT p,,~L%) .
% % The relaxation behavior is very different from that of a
T= fo T(')C“/ fo F(hdl. (400 linear reptating chaifi25]. In the linear reptating chain, for
most structures to relax, the head of the chain must reptate
and free them, a process takes of the order of the longest
relaxation timeT,,,~L3. In contrast, the loop mechanism
allows most structures to relax very quickly.

Ordinary differential equations fof(l) and F(I) may be
easily formed by appropriately integrating over E86),

—P(l,t=0)=V2F(1)+ V[U(HF (], (41

—F(I)=V2T(I)+V[U(I)T(|)]. (42) V. CONNECTION WITH SPONTANEOUS
SYMMETRY BREAKING IN 1D
These equations are exactly solvable, yielding rather compli-

cated expressions. However, to understand the scaling fom}sl?nt?rllsesfgr?t%?{t vé?:if:risstthheatmc(i)igellz Oggﬁlnte;iggzzhsorﬁi
of the solutions, it is useful to consider a simpler potential o y play sp y

the formU=ugy/I, which is equivalent to the full potential metry break_lng(SSB) In one (_JllmenS|on(1D). It is \_/veII
. 3 L known that in thermal equilibrium, symmetry breaking and
Eq. (37) atl<L, with uy=3. Plugging in power law forms ; .

. . “u long-range order cannot appear in 1D systems with short-
for F andT in Egs.(41) and(42), we find F(I)~1"" and : . R I imol ilibri del
T~127Y%, Forug=2, [2F(1)dI~F(0) and [ZT(1)dI~L32 rangeilnteractlons.. ecently, a simple nonequili rium mode

oldi 'f | 0 Zﬁ 0 0 ' that displays SSB in 1D was presen{&d]. The Rubinstein-
yielding, for long chains, Duke [9] reptation-tube model offers an additional interest-
ing example of a 1D system with short-range interactions
which displays symmetry breaking. In this model, symmetry
preaking has a particularly simple physical meaning. Con-
sider a linear DNA chain with no tension or loops. It is
1typically aligned with the field9]. There are two symmetric
c¢onfigurations: either segment number 1 is at the chain head,

T~ 1ol 3"2 (43)

The same asymptotic result is found using the full potentia
of Eq. (37). The lifetime of a given marked loop is much
shorter than that expected from a simple diffusion argumen

~ L2 (which corresponds to using no potentidi=0, in the ) ) o .
T ( P grop or segment numbek is at the chain head. A finite chain

above calculation This is due to the entropic bias of small , : , ,
[eventually flips between these two configurations. The flip-

loops to shrink, which compels loops to spend less time i ; . 4 Lo
“random walk” motion as compared to the pure diffusion ping time, however, grows very quickly with the chain size:

case. Note that the power-law exponent 3/2 in &g is " qrder to flip, the tail must reptate an order bfsteps
related directly to the prefactor of the effective potential that?92inst the field, and the rest of the chain must follow it, and
is derived from the detailed steady-state solution. thus the flipping time goes ase®-" with some constant
From this result, one can readily derive the scaling of thex- The chain is therefore effectively stuck in one of the two
ring center of mass diffusion coefficieB, using a classical configurations and symmetry is broken in the thermody-
scaling argumenftL1]. Essentially, diffusion proceeds by the hamic limit.
transport of loops along the ring. Each loop takes a time In this example, as in the model of R¢84], the mecha-
7~L? to travel a distance of ordé(L)~L", the linear size nism permitting spontaneous symmetry breaking depends on
of the polymer. If there were only one loop on the chain atthe presence of boundari@s., the existence of a chain head

any time, the center of mass diffusion constang would ~ and tail and on a conservation law in the chain biitke
obey number of+ and — particles is conserved by the bulk dy-

namics when loops are not permitjedhe latter is seen to
Dor=(R(L)/L)?, (44) be important by allowing loops, as in the present model
(without tension which corresponds to long-ranged interac-
where the right hand side represents the mean-square digons). Loops amount to pair creation and annihilation in the
placement of the center of mass arising from the transport dfulk, and break the conservation law. Adding loops also can-
one loop across a distan&e In reality, the number of loops cels the SSB: the chain is typically stuck in a symmetric
present at any time is proportional ko Hence the center of hooked statéSec. Ill A, Fig. 5.
mass diffusion constari? scales as We note that an interesting case of SSB in a 1D system,
with periodic boundary conditions and with no bulk conser-
D~LDy~L2" 071~ "2 (45  vation of the order parameter has been presefgsf
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VI. DISCUSSION pore sizes in standard agarose gels might well affect the dy-
namical features and scaling laws discussed in this paper.
The model is also applied to study dynamics in zero field.
he solution of the model in this case allows an exact foun-
ation of some known scaling properties of ring polymers.
TThe main effect of loops on the static chain properties are to
allow many undulations and wiggles per unit contour length.

. . ; As a result, the ring adopts much more compact configura-
We predict that the mobility of open-circular DNA should ions (average sizR~L1’4) than in the reptation cagahere

saturate much as in linear chains. Tension serves to stabili 1/ . X . .
a quasilinear conformation of the ring. In this regime, therezIS L. The dynamics have been studied using an interest-

are many coiled DNA segments, screening the effects of ten'9 approxmate equation of mothn for markgd loops. This
uation seems to be a useful basis for analytical study of the

sion. The screening of tension by coiled segments is essentigﬁ . 2

S . ; etfect of loops on polymer dynamics. The lifetime of a loop
for explaining the success of reptation models for IlnearwaS found 1o scale as—L 32 which is shorter than expected
DNA fragments| 10,33, which neglect both loops and ten- om pure diffusionr~L? T’his is due to an entropic Eias of
sion. Itis suggested that tension and loops have, to a CertaJsF'mr:lllploo s to shrinTk and be annihilated. The dif?usion coef-
extent, canceling effects. It is thus important to include botr% P :

. . . 72
effects in models of loop-mediated polymer dynamics. Som E:lenthlfhfoEnﬂ t\?i ?ca]lck;,\hasmlinrthe reiptza\flollr(l ?ﬁflf_ ; ,nt in
of the qualitative features of the motion of the ring are cap—thgurg tatieoneanad r(i)nocas‘,aes %ﬁ;igfgiatiines gctruem?s ver
tured by a simple mean-field theory. P 9 ' P y

The present predictions are difficult to check in standarqzifferent’ with most structures relaxing on short time scales.
electrophoresis experiments in agarose gels in which th hese results were obtained for ring-shaped polymers, but

DNA rings become hooked on dangling ends in the gelshould also be applicable to long linear chains in which loop
(*hoop in stick” effect, Sec. Ill B. An experimental situa- creation in the bulk is allowed. An exact solution of the

tion which eliminates the effects of dangling ends is offeredﬁf&iﬁit?;e ';Zti)lioa%(()jslscl)%le Ik;]etr:]: '((:)?S:S’ 2h?\'¥1'2t90‘3 %rfosz?v_er
by the microlitthographic arrays of posts introduced by ptati P Vi uncti poly

Volkmuth and Austin28]. These arrays were used to study mer length. This solution, as well as a more detailed study of

electrophoresis of linear DNA, which could be observed bythe zero-field dynamics, will be presented in a future publi-

fluorescence microscopy. Since these two-dimensi(2iJ cation. Fina_lly, we note that the physically intuitive treat-
arrays have a floor and a ceiling attached to the posts, gent .Of. cha|_n tension presen_ted h_ere may be u_seful also for
ring-shaped DNA cannot become impaled by a post. Thu escribing different systems in which polymers in a melt or
the hoop in stick effect is negated. The present work predictgbs'[""cIe array move under external forces.
that the mobility of plasmids in such an obstacle array should
saturate at a finite value, and not decrease exponentially with
the ring size as in standard gels with dangling ends.

In addition, agarose gels exhibit a very broad distribution We thank R. Austin, S. Leibler, S. Sandow, and L.
of pore sizes. The present model pertains more closely tlanovski for helpful discussions. This work was supported
experiments on regular lattice, since the broad distribution oby the Minerva Foundation, Munich.

The role of tension and loops in the dynamics of ring-
shaped DNA gel electrophoresis is studied. A microscopi
model, which adds tension and loops to the reptation mod%

to reaction-diffusion models, with the addition of a interest-
ing hierarchical pairing which represents the loop fingers.

ACKNOWLEDGMENTS

[1] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. [13] S. Guirrieri, E. Rizzarelli, D. Beach, and C. Bustamente, Bio-

Watson,Molecular Biology of the Cell3rd ed.(Garland, New chemistry29, 3396(1990.
York, 1994. [14] B. H. Zimm, J. Chem. Phy€4, 2187(1991).
[2] D. C. Schwartz and C. R. Cantor, C&lIl, 67 (1984). [15] S. B. Smith, C. Heller, and C. Bustamente, Biochemi&dy
[38] G. F. Carle, M. Frank, and M. V. Olson, Scien282 65 5264 (1991).
(1986. [16] T. A. J. Duke and J. L. Viovy, Phys. Rev. Le@i8, 542(1992.
[4] O©. J. Lumpkin, P. Dejardin, and B. H. Zimm, Biopolymeé¥4, [17] W. D. Volkmuth, T. Duke, M. C. Wu, R. H. Austin, and A.
1573(1985. Szabo, Phys. Rev. Letf2, 13(1994.
[5] G. W. Slater and J. Noolandi, Phys. Rev. L&#, 572(1985. [18] The term open circular refers to ring-shaped DNA which is not
[6] M. Doi, T. Kobayashi, Y. Makino, M. Ogawa, G. W Slater, supercoiled(closed circulax. Open-circular DNA is obtained
and J. Noolandi, Phys. Rev. Le@1, 1893(1988. from supercoiled DNA by a nicking procedure, which removes
[7] M. Rubinstein, Phys. Rev. Leth9, 1946(1987). base pairs from one of the strands, allowing the double-
[8] T. A. J. Duke, Phys. Rev. Let62, 2877(1989. stranded DNA to swivel and release the torsion which caused
[9] T. A. J. Duke, J. Chem. Phy83, 9052(1990. it to supercoil[19].
[10] T. Duke, J. L. Viovy, and A. N. Semenov, Biopolyme3d, [19] S. Mickel, V. Arena, and W. Bauer, Nucleic Acids Ret.
239(19949; C. Heller, T. Duke, and J. L. Viowyipid. 24, 249 1465(1977).
(1999; [20] P. Serwer and S. Hayes, Electrophore&i®44 (1987).
[11] J. P. de Gennes, J. Chem. Ph§5,572(1971). [21] S. Levene and B. H. Zimm, Proc. Natl. Acad. Sci. U.S84,

[12] J. M. Deutsch, Science49, 922(1988. 4054 (1987).



55 GEL ELECTROPHORESIS AND DIFFUSION OF RING. . 1793

[22] M. Wang and E. Lai, Electrophoresis$, 1 (1995. pairs. Typically the conformation also includes many O sites,
[23] J. Klein, Macromolecule49, 105 (1986. small branching subloops, etc.
[24] M. E. Cates and J. M. Deutch, J. Phyg, 2121(1986. [30] E. M. Sevick and D. R. M. Williams, Phys. Rev. 39, 3357
[25] S. P. Obukhov, M. Rubinstein, and T. Duke, Phys. Rev. Lett. (1994)-. )

73, 1263(1994. [31] G. Parisi and N. Sourlas, Phys. Rev. Léits, 871(198J).
[26] B. H. Zimm and W. H. Stockmayer, J. Chem. Phyg, 1301 32 G- T- Barkema and G. Schutanpublishedl .

(194 [33] This equation represents the positive root of a quadratic equa-

9. tion for g(s). The negative root corresponds to a nonphysical

[27] A. R. Kholkov and S. K. Nechaev, Phys. Left12A, 156 solution in whichN(L) is negative at large.

(1985. . [34] M. R. Evans, D. P. Foster, C. Godtee, and D. Mukamel,
[28] W. D. Volkmuth and R. H. Austin, Naturd58 600 (1992. Phys. Rev. Lett74, 208 (1995; J. Stat. Phys80, 69 (1995;

[29] The quasilinear conformation is represented in the model by a  C. Godrehe, J. M. Luck, M. R. Evans, D. Mukamel, S. San-
phase-separated distribution of charges, where half of the lat- dow, and E. R. Speer, J. Phys.28, 6039(1995.
tice is rich with+ sites and the other half rich with sites, as  [35] U. Alon, M. R. Evans, H. Hinrichsen, and D. Mukamel, Phys.
shown in Fig. 6a), along with the appropriate pairing into loop Rev. Lett.76, 2746(1996.



